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Simple deterministic self-organized critical system
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~Received 25 January 2000!

We introduce a continuous cellular automaton that presents self-organized criticality. It is one-dimensional,
totally deterministic, without any embedded randomness, not even in the initial conditions. This system is in
the same universality class as the Oslo rice pile, boundary driven interface depinning and the train model for
earthquakes. Although the system is chaotic, in the thermodynamic limit chaos occurs only in a microscopic
level.

PACS number~s!: 05.65.1b, 45.70.Ht, 05.45.Ra
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In 1987, Bak, Tang and Wiesenfeld showed that frac
behavior, that is, power-law distributions, can be observe
simple dissipative systems with many degrees of freed
without the fine tuning of parameters@1#. They called this
phenomenon self-organized criticality~SOC!. Until then, the
studies of fractal structures were basically related to equ
rium systems where fractality appears only at special par
eter values where a phase transition takes place.

Since the pioneering work of Bak, Tang, and Wiesenfe
an enormous amount of numerical, theoretical and exp
mental studies have been done in systems that present S
One of the most interesting experimental studies demons
ing the existence of SOC in nature was done in a quasi-o
dimensional pile of rice by Fretteet al. @2#. They found that
the occurrence of SOC depends on the shape of the
Only with sufficient elongated grains, avalanches with
power-law distribution occurred. If the rice had little asym
metry, a distribution described by a stretched exponen
was seen. Christensenet al. @3# introduced a model for the
rice pile experiment in which the local critical slope vari
randomly between 1 and 2. They found that their mod
known as the Oslo rice pile model, reproduced well the
perimental results.

A good understanding of the Oslo system was achie
by Paczuski and Boettcher@4#. They showed that it could be
mapped exactly to a model for interface depinning where
interface is slowly pulled at one end through a medium w
quenched random pinning forces. They found that the he
of the interface maps to the number of toppling events in
rice pile model. The critical exponents of the two mode
were identical~within the error bars!, showing that they were
in the same universality class. Paczuski and Boettcher
conjectured that the train model for earthquakes, which w
introduced by Burridge and Knopoff@5#, and studied in de-
tail in @6#, is also in that same universality class. The tra
model is the only model that we know~besides the one we
introduce here! that presents SOC and has no kind of emb
ded randomness. However, it is governed by coupled o
nary equations~ODE’s!, which makes its study very time
consuming.

A way of making a system governed by ODE’s mo
amenable to computer simulations is to discretize it in tim
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This was done by Olami, Feder, and Christensen~OFC! @7#,
who introduced a continuous cellular automaton~CCA! to
study the two-dimensional version of another Burridge a
Knopoff model for earthquakes@5#. ~A continuous cellular
automaton in SOC is known in chaos theory as coupled
tice maps. These systems are characterized as having s
and time variables defined in the domain of real and inte
numbers, respectively.! In the OFC model, SOC is seen on
in systems that have a geometry with dimensionality of
least 2. That system is a variation of a model introduced
Nakanishi@8#, which has a one-dimensional geometry. Ho
ever, the model introduced by Nakanishidoes notpresent
SOC, since the power-law distribution it presents has an
per cutoff that is unrelated to the system size.

Here we introduce a self-organized critical system tha
governed by a CCA~that is, the space is continuous and t
time is discrete!. It is one-dimensional and has no embedd
randomness, not even in the initial conditions. We will sho
that our model belongs to the same universality class as
Oslo rice pile, boundary driven interface depinning and
train model. The importance of our results comes from
fact that we show that it is possible to map stochastic S
systems to simple, discrete, chaotic systems, in which
randomness exists. Such an equivalence of a determin
model with no embedded randomness which is chaotic w
a stochastic model also occurs between the determin
Kuramoto-Shivashinsky@10# equation and the Langevin
equation proposed by Kardar, Parisi, and Zhang@11#. In our
opinion, the train model governed by ODE’s alrea
achieved this@6#. However, because its simulation is ve
time consuming, it will probably be impossible to find suc
equivalences for higher dimensional~two, three, etc.! sys-
tems, unless the system is discretized in time, as we do h
In fact, we are unaware of any studies on trainlike syste
with dimensionality higher than 1. Our model is a SOC sy
tem that is one-dimensional, totally deterministic, and w
discrete time.

Another important result of this paper concerns the f
that we show that although chaos exists in the model
decreases as the system size increases, and in therm
namic limit it exists only in a microscopic level. Conse
quently, our results indicate that the fractal structures see
nature and that are supposedly associated with SOC, cou
principle result only from nonlinearities in those system
without any need for the presence of random irregulariti
R6056 ©2000 The American Physical Society
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Such fundamental questions are also found in equilibri
statistical mechanics, where it is unknown if probabil
theory is only a tool to describe phenomena that in princi
could have been originated solely from microscopic ch
@12#.

The train model is shown in Fig. 1~a!. It consists of a
chain of blocks connect by harmonic springs. The blocks
on a rough surface with friction, and the first block is pull
slowly with a constant velocity by a driver. The dynamics
the model is as follows: suppose that all the blocks are
tially at rest. As the driver pulls the first block, it remain
stuck until the elastic force overcomes the static frictio
When this occurs, the first block will move a little and w
be stopped again by friction. Such small events~or earth-
quakes! will continue, and will increase the elastic force o
the second block. There will be a moment when the ela
force on the second block will overcome the friction forc
and then we will see an event involving two blocks. Th
kind of dynamics will continue with events involving thre
four, or all the blocks in the system.

The elastic force in blocki is given by f i5xi 2122xi
1xi 11, wherexi is the displacement of blocki with respect
to its equilibrium position~without losing generality, the
spring constant can be taken as equal to 1@6#!. The boundary
conditions arex050 andxL115xL . After an earthquake, in
which block i was displaced byDx, the elastic forces in
block i and in its nearest neighbors will bef i85 f i2D f , and
f i 618 5 f i 611D f /2, respectively, whereD f 52Dx. Thus, the
force that is relaxed in blocki is redistributed equally to its
next nearest neighbors, implying conservation of ela
forces. This is embedded into the geometry of the syst
However, the model does dissipate energy through frict
between the rough surface and the blocks. Consequently
model is conservative with respect to elastic forces, and
sipative with respect to energy. This is one of the main d
tinctions between the train model and the other Burridge
Knopoff earthquake model studied by Nakanishi and OF
in which neither the energy nor the forces is conserved.

In the discretized version of the train model that we int
duce here, each blocki is characterized by a variablef i ,
which we will call force, with i 51, . . . ,L, andL being the
number of blocks in the system. The boundary conditions
the same as the ones in the train model, which are gi
above. The dynamical evolution of the system is determi
by the following algorithm:

~i! Start the system by defining initial values for the va
ables f i , which can be the same for all the blocks, so th
they are below a chosen, fixed, thresholdf th .

FIG. 1. ~a! The train model.~b! The functionf(x).
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~ii ! Update the force in the first block by incrementing
force to the threshold value plus a fixed small valued f , i.e.,
f 15 f th1d f ~an event is going to be triggered!.

~iii ! Check the forces in each block. If a blocki has f i

> f th , updatef i according tof i85f( f i2 f th), wheref is a
given nonlinear function that has a parametera. Increase the
forces in its two nearest neighboring blocks according
f i 618 5 f i 611D f /2, whereD f 5 f i2 f i8 .

~iv! If f i8, f th for all the blocks, go to step~ii ! ~the event
has finished!. Otherwise, go to step~iii ! ~the event is still
evolving!.

One can use either a parallel or a sequential update in
evolution of the system. We have verified that the critic
exponents of the model do not depend on the type of upd
chosen. The system is governed byL variables and has two
parameters,a andd f , since without losing generality we ca
take f th51. The force in our model is supposed to mimic t
combination of two forces in the train model, that is, t
elastic and the friction forces. The elastic force is period
whereas the friction force in simulations is generally a
sumed to decrease with the velocity of the block. We ha
found numerically thatf mimics the combination of thes
two forces when it is a periodic function, since only in th

FIG. 2. Probability distributionP(s) of the number of toppling
eventss. ~a! solid line, L5512, a54, d f 50.1; dashed line,L
5512, a54, d f 50.01; short-dashed line,L5512, a52.5, d f
50.01. ~b! L532,64,128,256,512 witha54 andd f 50.1. ~c! Data
collapse of the cases shown in~b! with t51.54 andD52.20.
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way the system presents SOC behavior. So, the periodicit
the elastic force dominates over the form of the fricti
force. The models introduced by Nakanishi and OFC assu
that f is a strictly nonincreasing function. We have foun
that if we use a strictly nonincreasing function forf, such as
the one used in@8#, we observe in our model the presence
stretched exponentials, instead of powerlaws@9#. It is worth
noting that in this situation our model reproduces the res
of the distributions found with nearly round rice in@2#,
which were also governed by stretched exponentials.

The functional form we chose forf is shown in Fig. 1~b!,
which is given by f(x)512a@x# where @x# denotes
x modulo 1/a, that is, a sawtooth function. However, w
have tested several other periodic functions, and found
the SOC behavior we show here remains, that is, the res
are robust, the essential ingredient being periodicity~not nec-
essarily a perfect one! for f.

In Fig. 2 we show the distribution of events involvings
update steps, which is the size of the event, using par
update. The events that involve all the blocks of the ch
have been excluded from our analysis, since they do
belong to the same distribution, as expected. Before we
to compute the statistics, we wait until the last block h
moved, in order to neglect transient effects. In Fig. 2~a! we
show three different cases, withL5512, in which we have
varied one parameter at a time. The solid line refers toa
54 and d f 50.1, the dashed line is fora54 and d f
50.01, and the short-dashed line refers toa52.5 andd f
50.01. We see that the small events have their own dis
bution, like in the Oslo model for rice piles@3#. A careful
analysis has shown that these small events have an expo
tial distribution @9#. As s is increased the distribution be
comes a powerlaw, which has a cutoff related to finite s
effects, only. We find that the slope of the power law
independent ofa andd f . However, the crossover points* of

FIG. 3. ~a! Probability distributionP(T) of the number of top-
pling eventsT for L532,64,128,256,512 witha54 andd f 50.1.
~b! Data collapse of the cases shown in~a! using P(T)
5T2yf T(T/Ls) with y51.84 ands51.40.
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the exponential behavior to the power-law one depends oa,
but not ond f . The frequency of the small events is inverse
proportional tod f .

In Fig. 2~b! we show simulations keepinga andd f fixed,
with a54 andd f 50.1, and varyingL. We see that increas
ing L, the range of the power law increases. To fit the data
a single curve, we try the finite size scaling ansatzP(s,L)
5s2tG(s/LD), whereD and t are the basic exponents o
the model@13#, defining its universality class.D and t are
called the dimension and the size distribution exponents,
spectively. In our model we find that^s&;L, which results
in t5221/D. The best fit forP(s,L) is found fort'1.54
and D'2.20. The data collapse for these values of the
ponents is shown in Fig. 2~c!. Within the error bars, these
exponents are the same ones of the Oslo rice pile@2,4#,
driven boundary interface depinning@4#, and the train model
for an earthquake@4,9#. Consequently, all these models, in
cluding the one we introduce here, are in the same univ
sality class.

In Fig. 3~a! we show the frequency of the eventsP(T) as
a function of the its time durationT, for different system
sizes. The parameters are the same as in Fig. 2~b!. Again, we
see a power-law distribution, except for the smallest eve

FIG. 4. ~a! The largest~solid line! and the second larges
~dashed line! Liapunov exponents as a function ofa for d f 50.1,
and~b! as a function ofd f for a54, with L564 in both cases.~c!
The largest Liapunov exponent as a function ofL for a54 and
d f 50.01 ~dashed line!, a52.5 andd f 50.01 ~short-dashed line!.
The error bars associated with this calculation have approxima
the size of the plus sign shown on the curves.
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A data collapse for the functionP(T,L)5T2yf T(T/Ls) is
shown in Fig. 3~b!, with y51.84 ands51.40. These are the
same exponents found in the Oslo rice pile. From conse
tion of probability it follows thats(y21)5D(t21), in
good agreement with our results. The results shown in Fi
are, again, for parallel update, since in sequential update
time duration and event size coincide resulting iny5t and
s5D.

Using the method introduced by Benettinet al. @14#, we
have calculated the largest Liapunov exponent,l1, and the
second largest Liapunov exponent,l2, of the system. Ifl1 is
greater than zero, it implies that the system has a str
sensitivity to the initial conditions, and by definition, it
called chaotic. To study the Liapunov exponents we h
chosen the sequential update. The reason for this is tha
calculation of the Liapunov exponent assumes, by its o
definition, that small changes happen in the system in
time unit, and this is more consistent with a sequential rat
than with a parallel update. In Figs. 4~a! and 4~b! we show
l1 andl2 as a function ofa for d f 50.1, and as a function o
d f for a54, respectively. In both casesL564. We have
found that fora<1 the system is in continuous motion, an
et
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therefore being impossible to define earthquakes. Con
quently, SOC is only seen whena.1. We see that the Li-
apunov exponents increase asa or d f increases, with the
other parameters kept fixed. Figure 4~c! shows the larges
Liapunov exponent as a function of the system size foa
54 and d f 50.1 ~solid line!, a54 and d f 50.01 ~dashed
line!, anda52.5 andd f 50.01 ~short-dashed line!. We ob-
serve thatl1 is approximately constant for smallL and de-
creases nearly as powerlaw whenL is greater than a certain
value. The value where this bending occurs seems to be
sitive to bothd f anda. Sincel1→0 in the thermodynamic
limit ( L→`), we conclude that chaos exists only in a m
croscopic level, and that any time or space scales in
system are negligible. We have studied the system us
slower time scales, such as measuring time by the update
the first block. Still we find thatl1→0 whenL→`. In the
train model governed by ODE’s and pulled with a consta
finite velocity, we have found that the largest Liapunov e
ponent tends to a constant as the system size increases@15#.
However, our unpublished results show that the Liapun
exponents in that system start to decrease for system s
greater than a given value, as it happens in the system
introduce here.
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