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Simple deterministic self-organized critical system
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We introduce a continuous cellular automaton that presents self-organized criticality. It is one-dimensional,
totally deterministic, without any embedded randomness, not even in the initial conditions. This system is in
the same universality class as the Oslo rice pile, boundary driven interface depinning and the train model for
earthquakes. Although the system is chaotic, in the thermodynamic limit chaos occurs only in a microscopic
level.

PACS numbgs): 05.65:+b, 45.70.Ht, 05.45.Ra

In 1987, Bak, Tang and Wiesenfeld showed that fractalThis was done by Olami, Feder, and Christen€@RC) [7],
behavior, that is, power-law distributions, can be observed invho introduced a continuous cellular automat@CA) to
simple dissipative systems with many degrees of freedonstudy the two-dimensional version of another Burridge and
without the fine tuning of parametef4]. They called this Knopoff model for earthquakes&]. (A continuous cellular
phenomenon self-organized criticalt$0Q0. Until then, the  automaton in SOC is known in chaos theory as coupled lat-
studies of fractal structures were basically related to equilibtice maps. These systems are characterized as having space
rium systems where fractality appears only at special paramand time variables defined in the domain of real and integer
eter values where a phase transition takes place. numbers, respectivelyln the OFC model, SOC is seen only

Since the pioneering work of Bak, Tang, and Wiesenfeldjn systems that have a geometry with dimensionality of at
an enormous amount of numerical, theoretical and experileast 2. That system is a variation of a model introduced by
mental studies have been done in systems that present SOakanishi 8], which has a one-dimensional geometry. How-
One of the most interesting experimental studies demonstragver, the model introduced by Nakanisghbes notpresent
ing the existence of SOC in nature was done in a quasi-oneSOC, since the power-law distribution it presents has an up-
dimensional pile of rice by Frettet al. [2]. They found that per cutoff that is unrelated to the system size.
the occurrence of SOC depends on the shape of the rice. Here we introduce a self-organized critical system that is
Only with sufficient elongated grains, avalanches with agoverned by a CCAthat is, the space is continuous and the
power-law distribution occurred. If the rice had little asym- time is discretg It is one-dimensional and has no embedded
metry, a distribution described by a stretched exponentiatandomness, not even in the initial conditions. We will show
was seen. Christenset al. [3] introduced a model for the that our model belongs to the same universality class as the
rice pile experiment in which the local critical slope varies Oslo rice pile, boundary driven interface depinning and the
randomly between 1 and 2. They found that their modeltrain model. The importance of our results comes from the
known as the Oslo rice pile model, reproduced well the exfact that we show that it is possible to map stochastic SOC
perimental results. systems to simple, discrete, chaotic systems, in which no

A good understanding of the Oslo system was achievedandomness exists. Such an equivalence of a deterministic
by Paczuski and Boettchgt]. They showed that it could be model with no embedded randomness which is chaotic with
mapped exactly to a model for interface depinning where the stochastic model also occurs between the deterministic
interface is slowly pulled at one end through a medium withKuramoto-Shivashinsky{10] equation and the Langevin
quenched random pinning forces. They found that the heighéquation proposed by Kardar, Parisi, and Zhgtt. In our
of the interface maps to the number of toppling events in thepinion, the train model governed by ODE's already
rice pile model. The critical exponents of the two modelsachieved thig6]. However, because its simulation is very
were identicalwithin the error bars showing that they were time consuming, it will probably be impossible to find such
in the same universality class. Paczuski and Boettcher alsequivalences for higher dimensiond@wo, three, etg. sys-
conjectured that the train model for earthquakes, which wagems, unless the system is discretized in time, as we do here.
introduced by Burridge and Knopoff], and studied in de- In fact, we are unaware of any studies on trainlike systems
tail in [6], is also in that same universality class. The trainwith dimensionality higher than 1. Our model is a SOC sys-
model is the only model that we knothesides the one we tem that is one-dimensional, totally deterministic, and with
introduce hergthat presents SOC and has no kind of embed+discrete time.
ded randomness. However, it is governed by coupled ordi- Another important result of this paper concerns the fact
nary equationgODE'’s), which makes its study very time that we show that although chaos exists in the model, it
consuming. decreases as the system size increases, and in thermody-

A way of making a system governed by ODE's more namic limit it exists only in a microscopic level. Conse-
amenable to computer simulations is to discretize it in timequently, our results indicate that the fractal structures seen in

nature and that are supposedly associated with SOC, could in
principle result only from nonlinearities in those systems,
*Electronic address: mariav@msg.ucsf.edu without any need for the presence of random irregularities.
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(a) (i) Update the force in the first block by incrementing its
force to the threshold value plus a fixed small vadife i.e.,
MM NV f,=f,+ 6f (an event is going to be triggered

(iii) Check the forces in each block. If a blotkasf;
=f,,, updatef; according tof{ = ¢(f;—f), where¢ is a

@ (x) given nonlinear function that has a parameteincrease the
1 (b) forces in its two nearest neighboring blocks according to
flo=fi- +Af/2, whereAf=f,—f/.
| > (iv) If f/<fy, for all the blocks, go to stefii) (the event
Y l/a 2/a 3/a 4/a x has finishedl Otherwise, go to stefii) (the event is still
evolving).

FIG. 1. (a) The trai del(b) The functi . . . .
(&) The train model(b) The functiond(x) One can use either a parallel or a sequential update in the

evolution of the system. We have verified that the critical
Such fundamental questions are also found in equilibriumexponents of the model do not depend on the type of update
statistical mechanics, where it is unknown if probability chosen. The system is governed Ibyariables and has two
theory is only a tool to describe phenomena that in principlesarametersa and 5f, since without losing generality we can
could have been originated solely from microscopic chaosakef,,=1. The force in our model is supposed to mimic the
[12]. combination of two forces in the train model, that is, the
The train model is shown in Fig.(d). It consists of a g|astic and the friction forces. The elastic force is periodic,
chain of blocks connect by harmonic springs. The blocks aryhereas the friction force in simulations is generally as-
on a rough surface with friction, and the first block is pulled symed to decrease with the velocity of the block. We have
slowly with a constant velocity by a driver. The dynamics of g nd numerically thaip mimics the combination of these

the model is as follows: suppose that all the blocks are initwo forces when it is a periodic function, since only in this
tially at rest. As the driver pulls the first block, it remains

stuck until the elastic force overcomes the static friction.
When this occurs, the first block will move a little and will 10°
be stopped again by friction. Such small eve(us earth-
guakes will continue, and will increase the elastic force on
the second block. There will be a moment when the elastic = 10-5 |
force on the second block will overcome the friction force, A [
and then we will see an event involving two blocks. This
kind of dynamics will continue with events involving three, [
four, or all the blocks in the system. 10-12
The elastic force in block is given by f;=X;_1— 2x;
+X; 11, Where; is the displacement of bloakwith respect
to its equilibrium position(without losing generality, the 10°
spring constant can be taken as equal [6]1 The boundary I
conditions arex,=0 andx, , ;=X . After an earthquake, in
which block i was displaced by\x, the elastic forces in = 10-6[
blocki and in its nearest neighbors will B¢=f;—Af, and B
fl.,=fi.1+Af/2, respectively, wherd f=2Ax. Thus, the
force that is relaxed in blockis redistributed equally to its [
next nearest neighbors, implying conservation of elastic P —
forces. This is embedded into the geometry of the system. 10 10 10
However, the model does dissipate energy through friction
between the rough surface and the blocks. Consequently, the 10° —
model is conservative with respect to elastic forces, and dis- ]
sipative with respect to energy. This is one of the main dis-
tinctions between the train model and the other Burridge and
Knopoff earthquake model studied by Nakanishi and OFC,
in which neither the energy nor the forces is conserved. i i
i

In the discretized version of the train model that we intro- 10-4 -

duce here, each blockis characterized by a variablig, A RSV RSV T TN S
which we will call force, withi=1,...L, andL being the 10-5 1073 107!
number of blocks in the system. The boundary conditions are D
the same as the ones in the train model, which are given s/L
above. The dynamical evolution of the system is determined g, 2. probability distributiorP(s) of the number of toppling
by the following algorithm: eventss. (a) solid line, L=512, a=4, 6f=0.1; dashed lineL
(i) Start the system by defining initial values for the vari- =512, a=4, §f=0.01; short-dashed lind, =512, a=2.5, &f
ablesf;, which can be the same for all the blocks, so that=0.01. (b) L=32,64,128,256,512 wita=4 and5f=0.1. (c) Data
they are below a chosen, fixed, threshbjgl. collapse of the cases shown (i) with 7=1.54 andD =2.20.
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100 the exponential behavior to the power-law one depends on
but not onéf. The frequency of the small events is inversely
proportional tosf.

In Fig. 2(b) we show simulations keepiregand 5f fixed,
with a=4 andéf=0.1, and varyind-. We see that increas-
ing L, the range of the power law increases. To fit the data to
a single curve, we try the finite size scaling ansa{s,L)
=5 "G(s/LP), whereD and 7 are the basic exponents of
the model[13], defining its universality clasD and = are
T called the dimension and the size distribution exponents, re-
spectively. In our model we find thds)~L, which results
] in 7=2—1/D. The best fit forP(s,L) is found for 7~1.54
h and D~2.20. The data collapse for these values of the ex-
ponents is shown in Fig.(&). Within the error bars, these
exponents are the same ones of the Oslo rice [3ld],
h driven boundary interface depinnifig], and the train model
7\j ] for an earthquak4,9]. Consequently, all these models, in-
L cluding the one we introduce here, are in the same univer-
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sality class.

In Fig. 3(@ we show the frequency of the evemR§T) as
a function of the its time duratiof, for different system

FIG. 3. (a) Probability distributionP(T) of the number of top-
pling eventsT for L=232,64,128,256,512 wita=4 and 6f=0.1.
(b) Data collapse of the cases shown i@ using P(T)

sizes. The parameters are the same as in Fiy. Rgain, we
see a power-law distribution, except for the smallest events.

_ ; 1.2 T T T
=T Yf(T/L?) with y=1.84 ando=1.40. j
way the system presents SOC behavior. So, the periodicity of 08 F @ s
the elastic force dominates over the form of the friction < 06 - e i
force. The models introduced by Nakanishi and OFC assume < gl
that ¢ is a strictly nonincreasing function. We have found 04r oA )
that if we use a strictly nonincreasing function iy such as 02 o 7
the one used i8], we observe in our model the presence of o1 1' ; 2'5 s

5 X

stretched exponentials, instead of powerla@ss It is worth
noting that in this situation our model reproduces the results
of the distributions found with nearly round rice 2],
which were also governed by stretched exponentials.

The functional form we chose fap is shown in Fig. 1b),
which is given by ¢(x)=1—a[x] where [x] denotes
x modulo 14, that is, a sawtooth function. However, we
have tested several other periodic functions, and found that
the SOC behavior we show here remains, that is, the results
are robust, the essential ingredient being periodicitt nec-
essarily a perfect ondor ¢.

In Fig. 2 we show the distribution of events involvirsg
update steps, which is the size of the event, using parallel
update. The events that involve all the blocks of the chain
have been excluded from our analysis, since they do not
belong to the same distribution, as expected. Before we start
to compute the statistics, we wait until the last block has
moved, in order to neglect transient effects. In Fit) 2ve
show three different cases, with=512, in which we have
varied one parameter at a time. The solid line referato
=4 and 6f=0.1, the dashed line is foe=4 and 5f
=0.01, and the short-dashed line refersate 2.5 and 5f
=0.01. We see that the small events have their own distri-
bution, like in the Oslo model for rice pilgs8]. A careful
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FIG. 4. (a) The largest(solid line) and the second largest
(dashed ling Liapunov exponents as a function affor 6f=0.1,

analysis has shown that these small events have an exponefiw (b) as a function ot for a=4, with L =64 in both casesc)
tial distribution [9] As s is increased the distribution be- The largest Liapunov exponent as a functionLofor a=4 and
comes a powerlaw, which has a cutoff related to finite sizesf=0.01 (dashed ling a=2.5 and 5f=0.01 (short-dashed line
effects, only. We find that the slope of the power law iSThe error bars associated with this calculation have approximately

independent o& and 5f. However, the crossover poigt of

the size of the plus sign shown on the curves.
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A data collapse for the functioR(T,L)=T Yf{(T/L?) is  therefore being impossible to define earthquakes. Conse-
shown in Fig. 8b), with y=1.84 ando=1.40. These are the quently, SOC is only seen whear>1. We see that the Li-
same exponents found in the Oslo rice pile. From conservaPunov exponents increase asor of increases, with the
tion of probability it follows thato(y—1)=D(7—1), in  Other parameters kept fixed. Figurécshows the largest

good agreement with our results. The results shown in Fig. /@Punov exponent as a function of the system sizedor

are, again, for parallel update, since in sequential update ti]ﬁd' and 6f=0.1 (solid line), a=4 and 5f=0.01 (dashed

time duration and event size coincide resultingyin 7 and Ine), anda=2.5 andsf =0.01 (short-dashed line We ob-
I Yym7 serve that\ ; is approximately constant for smdlland de-

: . ) creases nearly as powerlaw whieris greater than a certain

Using the method introduced by Benetéhal. [14], we  y5jye. The vaiue where this bending occurs seems to be sen-
have calculated the largest Liapunov exponant, and the  sitive to bothsf anda. Sincex;—0 in the thermodynamic
second largest Liapunov exponexs, of the system. Ik, is  limit (L—o), we conclude that chaos exists only in a mi-
greater than zero, it implies that the system has a strongroscopic level, and that any time or space scales in the
sensitivity to the initial conditions, and by definition, it is system are negligible. We have studied the system using
called chaotic. To study the Liapunov exponents we havelower time scales, such as measuring time by the updates in
chosen the sequential update. The reason for this is that thie first block. Still we find thak;—0 whenL—o. In the
calculation of the Liapunov exponent assumes, by its ownrain model governed by ODE’s and pulled with a constant
definition, that small changes happen in the system in thénite velocity, we have found that the largest Liapunov ex-
time unit, and this is more consistent with a sequential ratheponent tends to a constant as the system size incre&ses
than with a parallel update. In Figs(a&4 and 4b) we show  However, our unpublished results show that the Liapunov
A1 and\; as a function ok for 6f=0.1, and as a function of exponents in that system start to decrease for system sizes
of for a=4, respectively. In both casds=64. We have greater than a given value, as it happens in the system we
found that fora<1 the system is in continuous motion, and introduce here.
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